This article was downloaded by: [University of Haifa Library]

On: 13 August 2012, At: 20:30 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl20

Rare gas storage and chemical reaction using nanospace in C 60 lattice

Kenichi Imaeda ^a , Kenji Ichimura ^b & Hiroo Inokuchi

Version of record first published: 18 Oct 2010

To cite this article: Kenichi Imaeda, Kenji Ichimura & Hiroo Inokuchi (2002): Rare gas storage and chemical reaction using nanospace in C 60 lattice, Molecular Crystals and Liquid Crystals, 386:1, 115-119

To link to this article: http://dx.doi.org/10.1080/713738815

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan,

^a Department of Applied Chemistry, Chubu University, Matsumoto, Kasugai, 487-8501, Japan

^b Graduate School of Natural Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan

^c National Space Development Agency of Japan, Sengen, Tsukuba, 305-8505, Japan

sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Mol. Cryst. Liq. Cryst., Vol. 386, pp. 115–119 Copyright © 2002 Taylor & Francis 1058-725X/02 \$12.00 + .00

DOI: 10.1080/10587250290113321

RARE GAS STORAGE AND CHEMICAL REACTION USING NANOSPACE IN C₆₀ LATTICE

Kenichi Imaeda Department of Applied Chemistry, Chubu University, Matsumoto, Kasugai, 487-8501 Japan

Kenji Ichimura Graduate School of Natural Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555 Japan

Hiroo Inokuchi National Space Development Agency of Japan, Sengen, Tsukuba, 305-8505 Japan

We demonstrated that rare gas (RG) occluded in the C_{60} lattice has a chemical interaction with C_{60} . In order to evaluate the interaction between RG and C_{60} , we calculated the electronic state of $C_{60}(RG)_n$ (n=1,2,3) crystals. RG atoms in $C_{60}(RG)$ (RG=He, Ne, Ar) are neutral, whereas those in $C_{60}Kr$ and $C_{60}Xe$ have positive Mulliken charges of 0.99 and 1.04, respectively. For $C_{60}(RG)_2$ and $C_{60}(RG)_3$, a slightly positive charge of 0.02 appeared on Ar atom in $C_{60}Ar_2$ and $C_{60}Ar_3$. The chemical reaction such as a hydrogenation of CO to CH_4 was found to occur in the nanospace of C_{60} -sodium-hydrogen.

Keywords: fullerene; C₆₀; rare gas; nanospace; first principle calculation; chemical reaction

INTRODUCTION

In the measurement of thermal desorption (TD) for C_{60} -sodium-hydrogen ternary superconductor, we noticed that the samples include a trace of argon because of a handling in a glove box filled with argon gas. Then we detected stoichiometric amounts of RG in C_{60} powders exposed to RG under ambient pressure at 473 K. Interestingly, RG seems to chemically

This work is partially supported by a Grant-in-Aid for Scientific Research (C) from Japan Society for the Promotion Science.

interact with C_{60} from the experimental results of gas desorption peak at high temperature by TD, large chemical Shift of $Ar2_P$ band by XPS and weak signal by ESR for the C_{60} -Ar compound [1,2]. On one hand, C_{60} -sodium-hydrogen compound includes catalytic sodium ion and chemically active hydride ion in the octahedral site [3]. We thought that a chemical reaction would occur in this nanospace by introducing various gases.

In this paper, we present the results of the electronic state calculation of $C_{60}(RG)_n$ (n=1,2,3) crystals to evaluate the interaction between RG and C_{60} . The results of a chemical reaction using C_{60} -sodium-hydrogen system is also presented.

EXPERIMENTAL

 C_{60} and C_{60} -RG crystals were built by Crystal Builder in a Cerius2 software. They were geometrically optimized and their electronic states were calculated by CASTEP in the Cerius2 with a first principle theory based on a density functional method within a local density approximation using an ultrasoft pseudopotential.

 C_{60} -sodium-hydrogen compound was prepared by direct reaction of C_{60} and sodium hydride (NaH) [4]. C_{60} -Na-H powders were exposed to 0.1 atm CO or N_2 gas at 473 K for three days. The gases after reaction were analyzed by thermal desorption apparatus equipped with mass-spectrometers and pressure gauges.

RESULTS AND DISCUSSION

1. Interaction Between RG and C₆₀

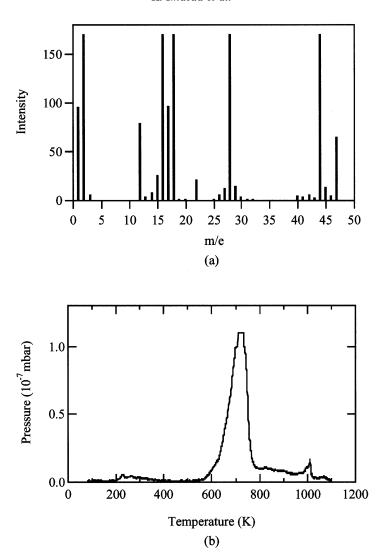
 C_{60} crystal with a lattice constant $\alpha=14.16$ Å and a space group $Fm\bar{3}$ was built using three atomic coordinates of C1 (0, 0.049, 0.245), C2 (0.217, 0.080, 0.094) and C3 (0.184, 0.151, 0.052) which were refined by Reitveld analysis for $C_{60}Na_{3.6}H$ superconductor [5]. α of the optimized C_{60} crystal was 14.207 Å. In the same way, we built $C_{60}(RG)_n$ (n = 1,2,3) crystals. They are $C_{60}(RG)$ in which one RG atom is placed at an octahedral (O) site, $C_{60}(RG)_2$ with one RG atom at a tetrahedral (T) site and $C_{60}(RG)_3$ with each one RG atom at both sites. Table 1 listed total energy (TE), α and charge (ρ) on RG atom obtained by Mulliken population analysis for the geometrically optimized $C_{60}(RG)_n$ (n = 1,2,3) crystals. As for $C_{60}(RG)$, RG atoms in $C_{60}He$, $C_{60}Ne$ and $C_{60}Ar$ are neutral, whereas those in $C_{60}Kr$ and $C_{60}Xe$ have positive Mulliken charges of 0.99 and 1.04, respectively. As for $C_{60}(RG)_2$, a slightly positive charge of 0.02 in $C_{60}Ar_2$ appears and positive

Compounds	TE (eV)	a (Å)	ρ	
C ₆₀ He	-9383	14.208	0.00	
$C_{60}Ne$	-10261	14.207	0.00	
$C_{60}Ar$	-9881	14.207	0.00	
$C_{60}Kr$	-9810	14.214	0.99	
$C_{60}Xe$	-9734	14.221	1.04	
$C_{60}He_2$	-9459	14.210	0.00	
$C_{60}Ne_2$	-11214	14.278	0.00	
$C_{60}Ar_2$	-10456	14.386	0.02	
$C_{60}Kr_2$	-10313	14.521	1.24	
$C_{60}Xe_2$	-10159	14.575	1.28	
$C_{60}He_3$	-9535	14.234	0.00^{a} , 0.00^{b}	
$C_{60}Ne_3$	-12167	14.298	0.00^{a} , 0.00^{b}	
$C_{60}Ar_3$	-11029	14.305	$0.00^{\mathrm{a}}, 0.02^{\mathrm{b}}$	
$\mathrm{C}_{60}\mathrm{Kr}_{3}$	-10815	14.484	$0.95^{a)}, 1.50^{b)}$	

TABLE 1 Calculated Values of Total Energy (TE), Lattice Constant (α) and Mulliken Charge (ρ) on RG Atom for $C_{60}(RG)$, $C_{60}(RG)_2$ and $C_{60}(RG)_3$

charges in $C_{60}Kr_2$ and $C_{60}Xe_2$ increase to 1.24 and 1.28. As for $C_{60}(RG)_3$, the charges on RG atoms in the O-site and the T-site correspond to those of $C_{60}(RG)$ and $C_{60}(RG)_2$.

Although we must consider the ambiguity in ultrasoft pseudopotential method and Mulliken population analysis, the positive charge on RG atom increases in the sequence He, Ne < Ar < Kr < Xe. The positive charge on RG atom and the negative charge on C₆₀ molecule indicate the charge-transfer (CT) state between RG and C₆₀. According to the theory of CT between a donor and an acceptor [6], the degree of CT depends on the difference (I_P-E_A) between an inonization potential (I_P) of RG and an electron affinity (E_A) of C₆₀. A smaller value of (I_P-E_A) gives a larger degree of CT. In the present system, E_A is constant and I_P decreases in the sequence He > Ne > Ar > Kr > Xe. The magnitude of Mulliken charge on RG atom in C₆₀(RG)_n (n=1,2,3) is qualitatively explained with (I_P-E_A).


The calcualtion predicts the observation of strong ESR signal in $C_{60}Kr_n$ and $C_{60}Xe_n$. We are now in progress to prepare these compounds under high temperature and high pressure to enhance the content of RG.

2. Chemical Reaction

Figure 1(a) shows the mass spectrum at $650\,\mathrm{K}$ of the desorbed gases from the sample of C_{60} -Na-H exposed to CO. The species corresponding to

^a charge on RG atom in the O-site.

 $[^]b$ charge on RG atom in the T-site.

FIGURE 1 Analyses of the desorbed gases from the sample of CO/Na-H- C_{60} ((a): mass spectrum at 650 K, (b): thermal desorption spectrum).

m/e=2, 16, 28 and 44 can be assigned to $\rm H_2$, $\rm CH_4$, $\rm H_2O$, $\rm CO$ and $\rm CO_2$. The species of m/e=1, 12 and 15 are H, C and $\rm CH_3$ as fragments of $\rm CH_4$. Considering the products of $\rm CH_4$, $\rm H_2O$ and $\rm CO_2$, the following hydrogenation occurs:

$$CO + 3H_2 \rightarrow CH_4 + H_2O$$

$$2CO + 2H_2 \rightarrow CH_4 + CO_2$$
.

Figure 1(b) shows the TD spectrum of ${\rm CH_3}$ (m/e=15) as a fragment of ${\rm CH_4}$. The peak temperature (${\rm T_P}$) of desorption is observed around 720 K. The desorption at high temperature suggests that the hydrogenation reaction of CO to ${\rm CH_4}$ occurs not on the surface but in the octahedral nanospace including hydrogen in the ${\rm C_{60}}$ lattice, because for the surface reaction, ${\rm T_P}$ should be low due to the desorption of physically adsorbed ${\rm CH_4}$.

Next we prepared the sample of C_{60} -Na-H exposed to N_2 and analyzed the desorbed gases upon heating. The parent peak of m/e = 17 corresponding to NH $_3$ and its fragmentation from m/e = 14 to m/e = 16 were observed in the mass spectrum at 650 K, Thus, in the N_2/C_{60} -Na-H system, the following NH $_3$ synthetic reaction occurs:

$$N_2 + 3H_2 \rightarrow 2NH_3$$

 T_P of NH (m/e = 15) as a fragment of NH $_3$ in the TD spectrum was observed around 650 K. Since this temperature is also high, NH $_3$ will be synthesized in the nanospace.

The nanospace in C_{60} -Na-H gives a chemical reaction field. One can apply this method to other various reactions such as the reduction of CO_2 , NO, NO₂ etc. and the synthesis of CH_3OH , CH_3CHO , CH_3COOH etc.

REFERENCES

- [1] Ichimura, K., Imaeda, K., & Inokuchi, H. (2000). Chem. Lett., 196.
- [2] Ichimura, K., Imaeda, K., & Inokuchi, H. (2000). Mol. Cryst. Liq. Cryst., 340, 649.
- [3] Suzuki, S., Nakao, K., Imaeda, K., Nakano, C., & Inokuchi, H. (1998). J. Phys. Soc. Jpn., 67, 2802.
- [4] Imaeda, K., Kröber, J., Inokuchi, H., Yonehara, Y., & Ichimura, K. (1996). Solid State Commun., 99, 479.
- [5] Imaeda, K., Kröber, J., Nakano, C., Inokuchi, H., & Ichimura, K. (1997). J. Phys. Chem. B, 101, 10136.
- [6] Torrance, J. B., Vazquez, J. E., Mayerle, J. J., & Lee, V. Y. (1981). Phys. Rev. Lett., 46, 253.